ORTA HASARLI BİR BETONARME BİNANIN
GÜÇLENDİRME ÖNÇESİ VE SONRASI KAPASİTE ANALİZİ

CAPACITY ANALYSIS OF A MODERATELY DAMAGED REINFORCED
CONCRETE BUILDING BEFORE AND AFTER STRENGTHENING

Türel Gür¹, Erdem Canbay¹, Cumhur Kaur², Haluk Sucuoğlu³

SUMMARY

A reinforced concrete building moderately damaged during 1 October 1995 Dinar earthquake is analysed using inelastic, non-linear static and dynamic analysis methods. The building is loaded vertically by the service loads and laterally due to 1997 Turkish earthquake code requirements in order to conduct static push-over analysis. Same building is also analysed under Dinar earthquake ground excitation before and after repair and strengthening. Time history and push-over analyses results are compared to evaluate the effectiveness and the reliability of repair and strengthening of the building. Element forces and displacements are also examined with respect to their yield values to assess the seismic capacity of the building. The enhanced strength and stiffness of the system after repair and strengthening is also compared with its initial state. Existing frame member cross-sections and reinforcement details are used to express the failure criteria of the members. Infill walls are modelled with diagonal-bracing elements which have same lateral stiffness and strength with the existing infill walls. The results of the analytical studies indicated the effectiveness of the employed strengthening process.

ÖZET

1 Araş, Gör. İnşaat Mühendisliği Bölümü Deprem Mühendisliği Araştırma Merkezi Orta Doğu Teknik Üniversitesi, Eskişehir Yolu, 06531, Ankara.
3 Prof.Dr., İnşaat Mühendisliği Bölümü Yapı Mekanı Anabilim Dalı Öğretim Üyesi Deprem Mühendisliği Araştırma Merkezi Başkanı Orta Doğu Teknik Üniversitesi, Eskişehir Yolu, 06531, Ankara.

GİRİŞ

Analizler için doğrusal olmayan, elastik ötesi analiz yapabilecek DRAIN-2DX (sürüm 1.10) solu elemanları programı kullanılmıştır [6,7].

STATİK İTİME ANALİZİ

Yapının mevcut durumuna göre hazırlanmış olan modeli için 1997 Türk Deprem Yönetmeliğine [2] uygulanarak bulunan esedğer statik yatay yükler sabit aralıklarla arttırlarak yapının çiplak, tügla boylu duvarlı (güçlendirme öncesi) ve betonarme perde duvarlı (güçlendirme sonrası) yatay yük taşıma kapasiteleri bulunmaktadır. Yapının taşıyabildiği yatay taban yükü toplam yapı ağırlığına (4473 kN), çatı ötelemesine ise toplam yük ağırlığının (14.3 m) bölünlerek boyutsuz olarak yanal yük ve deformasyon kapasiteleri elde edilmiştir (Şekil 2). Çiplak çerçeve üzerinde yapılan itme analizi sonucunda binanın yanal yük kapasitesi 706 kN olarak hesaplanmıştır. Tügla duvarlı sistemin yanal yük kapasitesi 767 kN ve betonarme perdeli sistem yanal yük kapasitesi 1110 kN’dur. Grafikten de gözlendiği gibi, bina mevcut tügla duvarlı
durumda tasarlanança çıplak kapasitenin %8.6 üzerindekilir. Ayrıca, tuğla yerine betonarme duvar eklendiği zaman yapının yanal yük taşıma kapasitesinde tuğla duvarlı sisteme göre %45 artış olmaktadır. Buna ilave olarak, güçlendirme öncesinde yapının elastik yanal yük kapasitesi 316 kN iken güçlendirme sonrasında kapasite 692 kN'a yükselmiştir. Hem elastik hem de toplam yanal yük kapasitesindeki artışlar sisteme sonradan eklenen betonarme perde duvarlarının etkisini açıkça ortaya koymaktadır [5].

Şekil 1. Yapı modelinin onarım öncesı ve sonrası görünümü

Şekil 2. Yapıın onarım öncesı ve sonrası yanal yük kapasitesi

Şekil 3. Yapının onarım öncesi ve sonrası yıkılma mekanizmaları

ÖZDEĞER ANALİZLERİ

Yapının mevcut ve güçlendirilmiş durumları için ayrı ayrı oluşturulunan matematiksel modellerin titreşim modları ve periyodları özdeğer analizleri ile belirlenmiştir. Hesaplanan periyodların ve ilgili kütte katkılarını dökümü Tablo 1’te verilmektedir. Gözlenen periyod azalması betonarme perdelerin yapının rijitliğine katkıını bir kere daha vurgulamaktadır. Şekil 4 ve Şekil 5’te ise yapının güçlendirme öncesi ve sonrasında modları karşılaştırılması olarak sunulmaktadır.

<table>
<thead>
<tr>
<th>Modlar</th>
<th>Güçlendirme Öncesi</th>
<th>Güçlendirme Sonrası</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Periyod (s)</td>
<td>Kütte Katkısı (%)</td>
</tr>
<tr>
<td>1</td>
<td>0.467</td>
<td>81.3</td>
</tr>
<tr>
<td>2</td>
<td>0.155</td>
<td>14.0</td>
</tr>
<tr>
<td>3</td>
<td>0.087</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>0.066</td>
<td>1.0</td>
</tr>
</tbody>
</table>

344
Zaman Tanım Alanı Analizleri

Dinar Depremi altında binanın güçlendirme öncecsinin ve sonrası davranışlarının daha iyi anlaşılmasını için çatı Katı yerdeğiştirme zaman geçmişleri aynı grafik üzerinde gösterilmiştir (Şekil 8).

Şekil 6. A ve B kolonlarının güçlendirme öncesi Dinar depremi altında Eksenel Yük-Moment Geçmişleri

Şekil 7. A ve B kolonlarının güçlendirme sonrası Dinar depremi altında Eksenel Yük-Moment Geçmişleri

BİNADA DİNAR DEPREMİ SONRASINDA GÖZLELENEN GERÇEK HASAR

Bunlara ilave olarak yapının üst katlarında her iki yandaki binaların çekici elektromekanik etkisinden dolayı lokal bazı hasarlar da belirlenmiştir. Ancak yandaki binaların deprem sırasında yarattığı etki bu çalışmaların kapsamı dışında olup daha detaylı bir çalışmanın kapsamına girmektedir.
Şekil 8. Güçlendirme öncesi ve sonrası Dinar depremi altında üst kat yerdeğişirmesi zaman geçimi

Şekil 9. 1 Ekim 1995 Dinar Depremi Spektrumu

SONUÇLAR

Yapılan analizlerin sonucunda aşağıdaki sonuçlara ulaşılmıştır:
1. Güçlendirme sonucu binanın birinci mod periyodu 0.467 saniyeden 0.318 saniyeye düşmüştü.
2. Tuğla duvarlar sistemin tasarım yanal yük kapasitesini %8.6 artırmıştır.
3. Binanın yatay yük taşıma kapasitesi perde duvarların eklenmesiyle 767 kN'dan %45’lik bir artışla 1110 kN’a ulaşmıştır. Elastik kapasitesi ise 316 kN’den 692 kN’a yükselmiştir.
4. Yapının rijitliği güçlendirme öncesinde 42440 kN/m, güçlendirme sonrasında ise 102153 kN/m'dir. Diğer bir deyişle binaya eklenen perde duvarlar yapının (elastik) rijitliğini 2.4 kat artırmıştır.

5. Güçlendirme öncesinde bina, tasarladığı dönemde yürürlükte olan deprem yönetmeliğinin öngörüdüğü minimum koşulları sağlayamamaktadır.

6. Güçlendirme sonrasında, binanın yatay yük kapasitesinin %70'i sondadan sisteme ilave edilen betonarme perdeler tarafından sağlanmaktadır.

7. Güçlendirme sonrası yükılma mekanizmasını zayıf kat mekanizmasından çarçeve kayma mekanizmasına dönüştügü gözlemmiştir.

8. Güçlendirme sonucunda perdeler binaya uygulanan yükün büyük kısmını taşıdıkları için diğer elemanlarda (güçlendirme öncesine göre) daha az zorlanma olmuştur.

KAYNAKLAR

1. __________, (1975), Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik
2. __________, (1997), Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik
3. __________, (1987), Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri, TS 498
6. Powell, G.H., (1993), Drain-2DX Element Description and User Guide for Element Type01, Type02, Type04, Type06, Type09, and Type15, UCB Report no 93/18, California, (İngilizce).

348