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ABSTRACT

The paper presents an entirely non-stationary random approach to the snlu-
tion of seismic response of structures, taking into account the time-delay of the
seismic attack to the supports of the structure. The solution is based on the
FEM discretization, the different starts of the excitations in the supports being
introduced in the corresponding system of differential equations. The idea of the
solution is the integral spectral decompositions of both, the excitation and the
response, into the deterministic mean value variable in time, and into spectral
components of the random part of the process in the form of Stiltjes integral. The
solution to the deterministic component of the response and the kernel of the s ec-
tral decomposition of the response was done using the Laplace transformation in
matrix form. The random component of the response is described by the matrix
of cross-correlation functions, which has been obtained as a double nonstationary
‘convolution in time.

1. INTRODUCTION

The excitation due to the natural seismicity has the character of a strongly
nonstationary random process. Such an excitation evokes a strongly nonstationary
response, where the transient processes of different type are combined with the
forced nonstationary vibration itself. Respecting these facts the real response will
be obtained, the character of which completely differs from the results of various
stationary or deterministic approximations or from the results based on current
seismic Codes [9,10]. Considering extensive structures with distant supports and
with the dense spectrum of natural frequencies, like bridges, pipe or high-voltage
lines, this discrepancy can cause a significant underestimation of seismic effects.
With these structures the time delay of the start of the excitation in individual
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supports can increase or decrease the response, according to the character of the
structure and of the excitation.

The authors get on with their previous works [7,8], in which the importance of
the transient effects for the behaviour of the structures, excited by nonstationary
random seismic movement, is obvious. The effect of time delay of the excitation
in different parts of the structure is given in the present paper. ‘

Performing the discretization for the use of FEM the problem.leads to the so-
lution of the system of ordinary differential equations with random nonstationary
right-hand sides and with different time-delays of the beginning of the excitation.
The coefficients of the equations are considered as constants, the damping as non-
proportional due to the possibility of the use of matemals w1th different dampings
or of special damping devices.

From the methods for the solution to the statistical problem the integral
spectral decompositions have been used; using it, the solution for most real seismic
events can be expressed in the form of analytical expressions, which can be easily
algorithmized, implemented into the existing FEM systems and used in practical
calculations: An important advantage of this approach is, that it makes possible a

detailed qualitative analysis of the influence of input parameters on the response
of the structure.

2, MATHEMATICAL MEAN AND CORRELATION MATRIX
OF THE NONSTATIONARY RESPONSE

Let’s shortly describe a common procedure for the solution to one typical
stochastic response of a discreté or discretized system. Assummig the linear sys-
tem and gaussian excitation, the response is gaussian too; thus the mathematical
mean value, the dispersion (variance) and mutual correlations of all components
sufficiently describe the response. The equation of motion of such a system is

A1) + Ba() + Cu(t) = -F¥() - Gv(t) 1)

A,B,C — square symmetrical matrices of real numbers of the dimension (n x
n), n— the number of degrees of freedom of the system. They describe the
inertial and damping properties of the system and the rigidities of its internal
.constrains. The damping is considered as nonproportional.

F, G - constant rectangular matrices of real numbers of the dimension (n x
m.), m — the number of degrees of freedom in the supports, where the kine-
matic excitation is being applied to the system. They describe the damping

and rigidity properties of the constrains between the system and the moving
supports.

u(t) = column vector of the length ‘n of the response of the system

v( . — column vector of the length m which describes the movements transferred -

to the system through the supports. The mechanism of this transfer has been
described by the matrices F, G.
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The elements of the vector v(t) are considered as given random, .continuous,
gaussian nonstationary processes. Respecting the character of the seismic events
it will be supposed that this excitation can be with sufficient accuracy expressed
in the form '

vO=m0) v (2)
vs(t) — the column vector of the length m of the gaussian processes, stationary
in the sense of correlations - :

m(t) — asquare diagbnal matrix (mxm) of deterministic modulation functions.
m(t) = diag|my(t), ..., mp (1) - (3)

The initial conditions are supposed to be homogeneous, viz.
u(t)

It can be proved that the processes v(t) and u(t) can be expressed in the
form of integral spectral decompositions

=0; | =0 (@)

t=0

v(t) :/ ¢! m(t) d®(w) + m(t)v,, ' (5)
| oQ
u(t) = / U(w, 1) dB(w) + uo(t) (6)
) . \
Vso, Vsc — mean values resp. centered parts of processes vs(t)

ug(t) — deterministic part (mathematical mean value) of the response

U(w,t) ~ (nxm) rectangular matrix of unknown deterministic functions describ-
ing transformation of random part of the excitation in frequency domain into
random part of the response in time domain ©

d®(w) = spectral differentials of the centered componenté of the processes v,(t),
taking in mind that, e.g. [6]: '

——

E {d8(w1) - T@)) = 6( — wy) S(wr) deoy dov (7)
E{} - operator.of the mathematical mean

Sy(w) — square matrix (m x m) of cross-spectral densities of centered parts of
the stationary processes v, ®) '

It can be also proved ([7,8]) that the unknowns uo(t), U(w,t) can be expressed
using equations

Ailo(t) + Bétg (1) + Cuo(t) = —(Fiia(t) + Gm(t))vso(2) 8)
uo(t) . 0; ug(t) — 0 (9)
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AUo(w, ) + BUg(w, 1) + CUo(w, t) = —~(Fia(t) + (iwF + G)m(t)) e'“*  (10)

 Up(w, ?) =0 Uo(w,1)|,_ =0 Coan

It is evident that the deterministic part of the response is independent from

the random part of excitation. For a majority of important cases of modulation

functions m(t) the matrix U(w,t) and the vector up(t) can be expressed analyti-

cally, e.g. using Laplace transform, but the numerical or experimental procedures

can be used too, if necessary. The solution of (10) and (11) can be obtained in the
form .of convolution: '

3

t ) '
U(w,t):-—Z/(S,ep"‘(P'“i”)f+S—1 eﬁt—(ﬁ—iw)f) .
. =1 0

- (Fin(r) + (iwF + G)m(r)) dr o (12)
Taking into account the diagonal form of matrix m(t) in accordance with (3) and

assuming the starting points for m excitation processes at o = At; > 0, (12) can
be rewritten as

n

' .
. U(w,t):—-iz / (Slel’l"‘(m—iw)"' +§ eiﬁ't-—(i)'i'—iw)r) .

j=1l=1 At

(Fmy(r) + (iwF + G)m;(r))dr (13)
Correlation matrix of the response will be obtained directly from its definition
based on U(w,t) - see e.g. [1]; taking into account (6) we obtain

Ku(t1,t2) = B {(u(t:) - uo(t1) (ata) — uo(ta))' } =
- / Uw, 11) So(w) Tf(w 13 dw (14)

For applications the dispersions Dy(t) of the response u(t) (i.e. 1 = t3) are
usually the most important. Putting (13) into (14) and supposing t; = i3 =1 we

have:
n t
>

k=178t

D.(t) = f: 7{

1,i=1_ "

t
/ (SlePr‘—(Pl-iw)h +§eﬁl—(ﬁ-iw)"1) .
Aty

- Spij(w, 71, 72) - (SL ePrt=(prtiv)ma +'s'{ep—kt—(m'i‘w)f=)'dndrz}dw (15)
where it has been denoted

Smij(w, 1, 72) = (Fimi(71) + (iw Fi + Gi)mi(1)) ‘Svij(é) :
. (F;mJ(Tg) + (-— iw F; + G;-)nlj(Tz)) (16)
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and F=|F,..,F,| ; =Gy, ..., Gnl.
The matrices S; and numbers pi entirely describe the system itself, havmg
nothing to do with the excitation. It can be shown [5] that

S( =X x, : (17)

where x; is a column vector with n elements, namely the eigenvector of the matrix
polynomxal Q(p), and further

Qp)xi = (Ap} +Bp+C)xy = 0 (18)

where following relations have been uged
X -X=0; A-X-T-X =I

Here X = |xy,...,Xn, X7, ..., X5 is the matrix of dimension (n x 2n),
T = diaglp1, ..., Pn, P1, ..., Pn] — diagonal matrix of dimensions (2n x 2n).

-3. THE EFFECTS OF EXCITATION DUE TO
REAL SEISMIC EVENTS

‘As the analysis of the records of real seismic events reveals, the random process of
the motion in foundations can be described in the form of (2.2), (2.3). In the case
of large constructions like hanging bridges, the time shift, caused by finite velocity
of the propagatxon of seismic waves, should be respected.

In most seismic events the spectral density of its stationary part has a char-
acteristic shape: It contains one dominant frequency wg, nonzero valuein w = 0
and fast monotone decrease for w > wg. Matrix S, (w) can be written in the form .
of (see Fig. 2)

su(w);so,-cp(w) . w(w);— (¢ > 26%) (19)

where

So¢ = square symmetrlcal matrix of nondimensional real numbers; it’s diagonal
elements express the exposition of the corresponding support of the con-
struction to the excitation. Nondiagonal elements express the degree of

entire mutual correlation of excxtatlons in. two supports Typical case is
Soii = 1; Soij < 1fori#j. : '
o — dispersion of stationary part of excitation; a-final value of dispersion in the

i-th 'support is given by product o3 - Sp;;
a,b — constants which determine the shape of the function ¥(w).

The e\ccmatlon process can be considered as a narrow- band one, the bandwidth

of .which bemg given by the ratio a/b; the function Y(w) accordmg to (19) has the
maxima in w = :i:\/a2 — 2b2. : ,
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The modulation of each of the components of excitation process v(t) can be
with acceptable accuracy formulated in the form of difference of two exponential
function, see e.g.[1,4]. The fact that the excitation in individual supports starts
in differént moments we introduce using the Heaviside function h(t), the step of
which is placed in the starting moment of the excitation.

mi(t) = h(t — At)(e (=88 _e=BU=At)y . 4 o5 (30)

mi(t) = h(t — At;)(—ae™*(=A1) L ge=Alt-At)) 4
+68(t — At;)(em (AL _e=At-At)) a< B

Supposing spectral density (19) and modulation functions (20) we can simplify
the expression (15). It can be rearranged in

W(t) = Z Z /// }: S epret=(pre=iw)ry

Li=LRI=1 oo At At "‘::’l‘r‘

Smij(w, 71, 72) - St ePr = PeH W g dry dw (21)

(index with bar means complex conjugate values, that is e.g. pi» = p; for I* = |
and p;- = py for [* = I). Both integrals, in 7, 7 domains, can be simply expressed
due to the form of the matrices Sy,;; (16), the integral in w can be solved using
the residual theorem. Thus we obtain

- Du(t) =
Z Z Z Al‘z;k"[fl??yok ‘fﬁi(;L (t)+ 1‘7:1‘2‘{71,‘( )+ J-',’f’ffk.(t)}_ +

i,j=1k,I=1 k*=k.k
1*=1,0

+AEG e [P + 1 FE- (0] + ARG [FX ) — 195 0] +
+Al‘1]lc‘ ‘ﬁY‘i'(ka‘ (t)
(22)
where
At)a(;,); =5;91XiY!S;, X, Y€ {F,G}, (X,Y can be either ForG)

t t

¢1g(t,w) - / eg,t—(p:-iw)r Thi(T) dr ; xu(t,w) = / ePtt—(Pl—iw)-r m,‘(T) dr

At : Aot
o .
R = / W W) (W) de, Ene{bx}.  (23)

The residual theorem is applied to integral (23).
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4. NUMERICAL EXAMPLE

Let’s analyse the horizontal seismic response of a bridge, which has been
modelled as a symetric simple beam with 5 lumped masses m; + ms, on elastic
supports (high piers, spring constants K} = K3 = K,yp), see Fig. 1. The elastic
constants are Cf/, being defined as forces in the points k, which cause unitary
displacement of the beam in the point i = k and zero displacement in other points

itk.

! .,3\ .‘5 .l’ 3 .\l/

l u; - P s
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!

Tv o .\ AN

Fig. 1 Scheme of the structure, its natural modes.
wy +ws= 6.508, 24.840, 37.680, 41.610, 63.515 rad/sec.

The seismic excitation is being transferred into the structure by means of the
rigidity and damping of the supports Kyup = LLTTE9 N/m, B,up = 0.98E7 N.s/m,
as defined by the matrices on the right-hand side of equ. (1)

L77E9 0 0.98E7

0
0 0 0 0
G= 0 0 ; F= 0 0
0 0 0 0
0 L77E9 0 0.98E7

‘The matrix A in (2.1) is a diagonal one, containing the masses m; on its diagonal.
B is diagonal too, the members of the matrix C are equal to spring constants of
the beam Cf,ﬁ with the exception of the supports, where the "external” springs
influence on the motion of the masses in the supports. We have therefore

Cik = Cf,ﬁ, with the exception of c¢;; = c55 = Cf{ + Kyup.

Thus we obtain

[ 1.24E6 0 0 00
| 0o 1158 0 0 0
A=l 0 90Es 0 0| X8
[147E7 0 0 0 0
| 0o 28E- 0 00
B=1 0 - 590E5 0 0 | N/m




2.00E9 -5.20E8 3.67E8 -9.1TE7 1.53E7
o C= -5.20E8 1.41E9 -1.35E9 5.50E8 -9.17E7 N
T | 367E8 -1.35E9 1.95E9 ~1.35E9 3.67E8 N/m

From these given characteristics of the structure the complex eigenvalues p; and’

elgenvectors X; have to be calculated, as the roots of (18). We obtain e.g. (di- |
mension 1/sec):

p1=—0.854+6.453 i; py = —1.788 + 24.878 i; p3 = —5.518 + 37.324 i

The first two eigenvectors (dimensionless) are .

1.00 0.001i 1.00 © 0.001
19.32 1.20i 279 0591
x;=| 2689 1791 | ; xo=] 000 0.001
19.32 1.201 -2.79 -0.591
1.00 0.001i -1.00 0.001

From these eigenvectors we obtain the matrices S; using the relation (17). These
matrices, here of the order 5x5, are complex, symetrical and those, corresponding
to complex coniugate roots, are complex coniugate. They have the meaning of
coefficients for the decomposition of the excitation (12), as explained in [7,8]; the
decomposition itself reminds the decomposition of harmonic loading mto natural
modes.

- Lets consider the input signal with the stationary random part of the type
(19) with the peaks near the 1st and 2nd natural frequencies of the structure. The
modulation function be of the type (3.2) with its maximum value at ¢t = 1.20 sec,
the excitation of the second support starts with the time delays of zero, half and
total of the prevailing period of the excitation (see Fig. 2).

08
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0025
10 20 30 " 50 2 4 s

Fig. 2 The excitation (3.1): ¢ = 0.90 m, (a,b) = (6.5,1.6); (24.8,6.2) rad/sec.
The modulation function (3.2): a = 0.15, 8 = 2.5,
the time-shifts At = (0, 0.48, 0.97); (0, 0.13, 0.25) sec.
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The dispersions of the response of the masses my + ms are time-dependent, due
to the nonstationarity of the process. They were calculated from the equ. (15),
which was rearranged into (22) and (23). The resulting graphs of the dispersions

(i-e. the absolute values of the diagonal members of the matrix Dy(t)) plotted
against the time are on the Fig. 3.

1, 1,
pilw oy
.A \ A

(a) -

¢ (2,2) 10
| (4.4)
2r (1'1) 0.5
: 5.5 : (2,2) (4,4)
0 T 4 s s 0 2 4 ] ]

Fig. 3 Dispersions of the masses 1 < 5 as functions of time.

Case a): the excitation with the prevailing frequency wo = 6.50 rad/sec,
At =0.0,0.48,0.97 sec.

Case b): the excitation wg = 24.8 rad/sec, At = 0.0, 0.13, 0.25 sec.
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5. CONCLUSIONS

The resulting graphs on Fig. 3 show a quite clear diversity between the
respouses of symetric masses 2,4 or 1,5 for greater time-delays of the excitation
in both supports. A significant difference between the magnitude of the response
has not been noticed for the considered parameters of the excitation, a deeper
parametric analysis being forseen for next future. A

- Nevertheless the presented extension of the previously described method [7,8]
has proved itself as useful, as it makes possible to respect the nonstationarity
as well as the difference in the excitations in distant supports of the structure
in stochastic terms, solving the problem analytically. The numerical realization
of the method is in priiciple practicable, of course with some exigencies to the
software and to the computer time (about 30 min. for one of the 6 graphs on
Fig. 3, using PC 486).
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